

The Science of the Einstein Telescope

G. Bruno

IRMP institute, UCLouvain

The Einstein Telescope is a future observatory of gravitational waves

- → Gravity
- → Universe

ET EINSTEIN TELESCOPE

- One of the four fundamental interactions
 - The only one not yet described by a quantum relativistic theory

electron <10⁻¹⁶cm

proton (neutron)

Some predictions of General Relativity

- Space and time are « curved » by matter
 - e.g. atomic clocks on GPS satellites run as fast as ~40 μs per day w.r.t. those on earth
- Black holes
- Gravitational waves
 - Space-time deformations travelling at the speed of light
 - Observed for the first time in 2015

The universe

- Universe observations so far via:
 - photons (e.m. waves, x-rays, γ-rays)
 - cosmic rays (p, e, nuclei)
 - neutrinos
- GW revolution: unperturbed, rich, far-reaching information
 - Astrophysics
 - fundamental interactions (gravity, strong interaction)
 - Cosmology (dark matter, accelerating universe expansion, universe evolution)

Image credit: NAOJ/ALMA http://alma.mtk.nao.ac.jp/

Direct observation of gravitational waves

- First direct detection by LIGO/Virgo collaborations in 2015
 - Nobel prize 2017 for R. Weiss,
 K. Thorne and B. Barish
 - 2016 G. Lemaitre prize from UCLouvain to K. Thorne

GW detection principle

Beam-splitter Mirror = Interference

- Laser interferometers measure changes in arm length difference
- Effect of merger of two BHs (30 solar masses each) at 10^9 light years $\sim 10^{-18}$ m
- Laser wavelength ~ 10-6 m

Detector sensitivity

- Seismic noise
- Gravity gradient noise
- Thermal noise
- Quantum noise
- Excess gas

.. and myriad of technical noise sources

A GW observatory in operation (Virgo)

GW Technology

Pushing frontiers in mechatronics, lasers and optics, material sciences, vacuum and cryogeny, controls, ...

Measuring and attenuating vibrations

Vacuum technology

Optics, coatings, special materials, laser technology, semiconductor technology

Cryogenic systems

Virgo collaboration

- ~800 members, ~450 authors, 136 institutions from 15 countries
- 36 Groups:
 - 32 full members
 - 4 in the first year
- Belgium: 7 universities, 50 members
- Contributions: instrumentation, computing and data analysis

9 countries

From current detectors to the next

generation

ein Telescope

Einstein Telescope design

10 kr

- Longer arms (10 km)
 - Effect of GW is equivalent to a relative change in the arm lengths ($\Delta L/L$)
 - → All mirror displacement noise sources reduced by making L larger

but this increases laser beam size (need for large mirrors)

- Underground operation (~250 m)
 - Reduction of seismic and gravity gradient noise
 - → key for sensitivity at low frequency
- Triangular shape
 - Wave polarizations
 - Null streams
 - Redundancy
 - Sky coverage
 - Single compact infrastructure
- "Xylophone design"

- Science
 - Seismic, Newtonian, anthropogenic noise
- Cost and feasibility
 - Geology, topography, climate, access, services, local regulations
- Socio-political factors
 - Availability of funds

Preparing the ground for ET

Research and development facilities for ET technology in the Euregio Meuse-Rhine

ETpathfinder

Objective: Development of a model infra-

structure for testing new gravitational wave detector technologies and concepts in a complete interferometer in an ET-like envi-

ronment

2019 - 2022

Location: UMaastricht-NL

Budget: € 14,8 million

Duration:

E-TEST

Objective: Development of ET-technology

- Geological exploration of the EMR and determination of the optimal ET location.
- Developement of advanced prototypes for cryogenics, optics and seismic isolation.

Location: CSL ULiège - BE

Budget: € 15,0 million

Duration: 2020 – 2023

ET2SMEs

Objective: Promotion of cooperation between

SMEs, large companies and R&D institutions that deal with ET-relevant key technologies in a broad understanding and towards multiple application fields by initiating SME-driven cross-border R&D projects.

Budget: € 2,23 million

Duration: 2021 - 2023

BACK-UP

System	GW amplitude
Tennis ball rotating around a post attached to a 1 m string and at 10 m distance	h ~ 1. 10 ⁻⁵⁴
Hulse and Taylor pulsar	h ~ 1. 10 ⁻²⁶
Io around Jupiter	h ~ 2. 10 ⁻²⁵
Binary neutron star merger at the Milky Way center	h ~ 2. 10 ⁻¹⁹
BH (30 Msun) binary merger at 10 ⁹ parsecs	h ~ 1. 10 ⁻²¹

