DIRECTED-ENERGY: A VERSATILE TECHNOLOGY FOR SPACE APPLICATIONS

Pr. André Fűzfa University of Namur

WHAT MEANS « DIRECTED-ENERGY »?

- \star Beams to remotely deliver energy over large distances
- \star Electromagnetic coherent radiation
 - \rightarrow Maser (1953) : microwaves
 - \rightarrow Laser (1960) : optical/infrared
 - \rightarrow Phased arrays
- ★Particles (charged/neutral), plasma, acoustic waves, etc.
- \star Combination of high-power and « long » duration
- \star Versatile technology:
- \rightarrow defense
 - \rightarrow space debris mitigation ; asteroid redirection
 - \rightarrow space-based solar power through wireless power transmission
 - 🚽 propulsion

DIRECTED-ENERGY: AN ACTUAL TECHNOLOGY

- ★ Operational/experimental weapons
 - \rightarrow Fastest possible (speed of light)
 - \rightarrow Invisible (infrared) and silent
 - → Precision and aiming (flat trajectory, gravity almost insensitive)
 - \rightarrow No ammunition but power supply
 - \rightarrow Tracking for energy delivery
 - \rightarrow Lower cost per target
 - → Space warefare (satellite-blinding, etc.)
 - → Blooming by target evaporation, beam diffraction, atmospheric scattering and absorption

★ Developed at least by → China, France, Germany, India, Iran, Pakistan, UK, USA, Russia, Turkey.

DIRECTED-ENERGY FOR SPACE DEFENSE

★Satellite-blinding
★Space debris removal/deorbiting
→ vaporization and thrust
★Asteroids

 \rightarrow Remote composition analysis

- \rightarrow Orbital parameters refinment
- \rightarrow redirection and deviation
- \rightarrow orbital capture.

★ United Nations Outer Space Treaty → Resolution 2222 (1966) Article 4:

« States shall not place nuclear weapons or other weapons of mass destruction in orbit or on celestial bodies or station them in outer space in any other manner »

Artist views

DIRECTED ENERGY FOR POWERING EARTH AND SPACE (1/2) ★Space-based solar power → collectors in space → wireless power transmission → receiving power via antenna ★Advantages

Photovoltaic Direct Current to Radio Frequency Antenna Module (PRAM) On flight in May 2020. → constant optimal orientation
→ no atmospheric disturbances
★ Difficulties:
→ space launch costs
→ maintenance and hostile conditions
→ heat management
★ Actively pursued by

 \rightarrow possible almost continuous illumination

→ China, India, Japan, UK, USA, Russia

Directed energy for powering earth and space (2/2)

 \star Wireless power transmission

- \rightarrow laser or microwave
- \rightarrow development of solar-pumped laser \rightarrow Difficulties :
- •beam spreading and focusing
 - large receiving ground station
- Efficiency loss in power conversion and transmission

 \star Solar energy for powering space toward industrialization

- \rightarrow alternative to nuclear generators
- \rightarrow remote power to distant space stations or planets
- \rightarrow propelling lightsails
- → external power supply of electric propulsion for outer solar system and interplanetary exploration

Nikola Tesla's Wardenclyffe wireless station (1904)

Directed energy for space propulsion (1/2)★ Microwave and laser thermal rocket (Parkin) \rightarrow remote heating of on-board inert propellant fluid ★ Propellantless propulsion : lightsails → radiation pressure Thrust = Power / c (1Newton for 300 MW) Original idea by Forward (1964) \rightarrow Around Earth : 10⁻⁶ N thrust/m² (ionic thruster ~0.01N) \rightarrow solar sailing: decaying thrust with distance \star Solar sails space missions spatiales IKAROS, NanoSail-D, Lightsail (2010-2019) ★ Improvement: beam-propelled lightsails \rightarrow overcoming the solar flux decay \rightarrow access to higher velocities \rightarrow external attitude and course control (several beams) \rightarrow propulsion + powering

DIRECTED ENERGY FOR SPACE PROPULSION (2/2)

- ★Statite = static + satellite : continuously operated lightsail
 - \rightarrow Non-keplerian orbits and halo orbits
 - \rightarrow Modified Lagrange points
- \star Applications
 - \rightarrow Solar storm alerts (Space weather)
 - \rightarrow Micro-sail constellations
 - \rightarrow Freight transportation with laser-aided solar sails
 - → Hybrid propulsion (electric/plasma+sail) interplanetary spaceflight.
 - \rightarrow Interstellar exploration up to relativistic velocities
- \star Challenges for material sciences
 - \rightarrow high reflectivity
 - ightarrow low surface mass density
 - \rightarrow high mechanical and temperature resistance

Halo orbit of a statite

Statite in syncrhonous orbit with Venus

BREAKTHROUGH STARSHOT (2016)

★ Board: Y. Milner, M. Zuckerberg, S. Hawking, etc.

Network of ground-based propelling beams (IR laser 10-100 GW)

 \star Solar powered (10-100km² collecting surface)

★ Flyby of Proxima Centauri with robotic nanocrafts ~1-10grams

 \star V~0.2 c ; 20 years-long trip

, ★ Development : 30 years

- ★ Estimated cost: 10 billion USD
- Relativistic astrodynamics (UNamur)

Starshot

Military project: 1MW

K. Parkin, Acta Astronautica 152, p. 370-384 (2018)

A. Füzfa, Physical Review D 99, 104081 (2019) A. Füzfa, W. Dhelonga, O. Welcomme, Physical Review Research 2, 043186 (2020)

DIRECTED-ENERGY, A KEY TECHNOLOGY FOR SPACE EXPLORATION

 \star Currently : military prototypes and early deployment

\star Peaceful applications in Space:

- \rightarrow space-debris analysis and remote removal
- \rightarrow Asteroid protection and exploitation
- \rightarrow Key to space-based solar power for Solar System industrialization
- \rightarrow Propellantless propulsion and continuously operated lightsails
- (space stations and observatories, freight transportation) \rightarrow Hybrid propulsion for manned interplanetary flights

(electric/plasma + sail)

\star The future of the Solar System?

An educative SCI-FI novel based on established science

